


Marks: 36

Attempt any nine of the following. All carry equal marks.

i. If
$$C = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 show that $(C^t)^t = C$

Solve the following system of linear equations using Cramer's rule: x-2y=5, 2x-y=6

iii. Find the quotient
$$\frac{Z_1}{Z_2}$$
 where $Z_1 = 3 - 4i$, $Z_2 = 4 + 5i$

Simplify with the help of logarithm (28.65)14

v. If
$$x = \sqrt{10} + 3$$
 find the values of $x - \frac{1}{x}$ and $x^2 + \frac{1}{x^2}$

vi. Factorize a2-b2+2b-1

vii. Factorize
$$81x^4 + \frac{1}{81x^4} - 14$$

- viii. If product of two polynomials is $x^4+6x^3-3x^2-56x-48$ and their LCM is $x^3+2x^2-11x-12$. Find their HCF.
- For what value of k the expression $4x^4 + 32x^2 + 96 + \frac{128}{x^2} + \frac{k}{x^4}$ will become a perfect square?
- Find the solution set of |3x-5|+7=11
- Graph the equation x+2y=6
- xii. Simplify $\frac{2x}{3x-12} \div \frac{x^2-2x}{x^2-6x+8}$

SECTION-C

Marks: 24

Attempt any three of the following questions. All questions carry equal marks. NOTE:

- Show that the points A(3,2), B(9,10) and C(1,16) are the vertices of an isosceles triangle.
- If two angles of a triangle are congruent then the sides opposite to them are also congruent.
- Prove that any point on the right bisector of a line segment is equidistant from its end points.
- Construct ∆KLM such that mKL=mKM =5.1cm and m ∠ K=65°