Faisalabad Board 2018 (Second Group)

Roll No.(in Figures):

(in Words):

Maximum Marks 60 SUBJECTIVE TYPE (PART- I) Time Allowed :2.10 Hours

Q2. Write short answers to any SIX (6) questions:

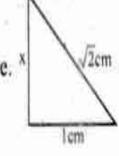
 $(6 \times 2 = 12)$

- Define matrix. (i)
- (ii) If $A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 7 \\ -3 & 8 \end{bmatrix}$ then find 3A 2B.
- (iii) Define real numbers.

(iv) Evaluate: i27

- Express is scientific notation: 0.00643
- (vi) Write in the form of single logarithm: log 5 + log 6 log 2
- (vii) Define polynomial.
- (viii) Rationalize the denominator of $\frac{2}{\sqrt{5}+\sqrt{2}}$. (ix) Factorize: x^2-a^2+2a-1

Write short answers to any SIX (6) questions:


 $(6 \times 2 = 12)$

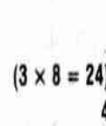
- Find the L.C.M. by factorization: 39x7y3z, 91x5y6z7
- Define equivalent equations.
- (iii) Solve: |2x + 5| = 11

- (iv) Draw (-3, -3) on graph paper.
- (v) Find the values of m and c of 3 2x + y = 0 by expressing it in the form of y = mx + c.
- (vi) Define non-collinear points.
- (vii) Find the mid-point of the line segment joining pairs of points A(6, 6), B(4, -2).
- (viii) State S.A.S. postulate.
- (ix) Find the value of m and n in parallelogram LMNP. 401-10

 $(6 \times 2 = 12)$

- Q4. Write short answers to any SIX (6) questions: In the given figure, \overline{CD} is right bisector of the line segment \overline{AB} . If $\overline{mAB} = 6$ cm, then find the
 - (ii) Define obtuse angle triangle. mAL and mLB.
 - (iii) Define similar triangles.
 - (iv) Find the value of x in the given figure. X

- (v) State Pythagoras Theorem. (vi) Verify that triangle having the given measures of sides is right angled:
 - a = 5cm, b = 12cm, c = 13cm


(vii) Define the rectangular region.

- (viii) Construct a triangle ABC in which: mAB=3.2cm, mBC=4.2cm, mCA=5.2cm
- (ix) Define incenter of the triangle.

PART . II

Attempt any THREE questions in all. But question No.9 is Compulsory. Note:

- Solve by using Cramer's rule: 2x 2y = 4, 3x + 2y = 6Q5. (a)
 - Simplify: $\left(\frac{a^p}{a^q}\right)^{p+q} \left(\frac{a^q}{a'}\right)^{q+r} + \left(a^p.a',\right)^{p-r}, a \neq 0$
- Use log tables to find the value of: 0.8176×13.64 Q6. (a)
 - If x + y = 7 and xy = 12, then find the value of $x^3 + y^3$. (b)
- Factorize: $(x^2 4x 5)(x^2 4x 12) 144$ Q7. (a) Find the value of k for which the given expression will be a perfect square: (b)
 - $4x^4 12x^3 + 37x^2 42x + k$ Solve the inequality: $4x - 1 \le 3 \le 7 + 2x$, where $x \in \mathbb{R}$
- Q8. (a) Construct triangle PQR and draw its altitudes: mPQ = 6cm, mQR = 4.5cm, mPR = 5.5cm
- Q9. Prove that any point on the right bisector of a line segment is equidistant from its end points.
- (OR) Prove that triangles on equal bases and of equal altitudes are equal in area.

