

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer book. Cutting or filling we or more circles will result in zero mark in that question

- Which one of the following is the smallest quantity?
- (A) 0.01 g

(B) 2mg

(C) 100mg

(D) 5000 ng

By dividing displacement of a moving body with time, we obtain:

(A) Speed

(B) Acceleration

(C) Velocity

(D) Deceleration

Co-efficient of friction between wood and concrete is:

(A)
$$\mu_{\rm s} = 0.8$$

(B)
$$\mu_{\rm s} = 0.2$$

(C)
$$\mu_s = 0.9$$

(D)
$$\mu = 0.62$$

Two bodies of masses m1 and m2 attached to the ends of an inextensible string pulling over a frictionless pulley such that both move vertically, the acceleration of the bodies is

(A)
$$\frac{m_1 \times m_2}{m_1 + m_2} g$$
 (B) $\frac{m_1}{m_1}$

(C)
$$\frac{m_1 + m_2}{m_1 - m_2} g$$
 (D) $\frac{2m_1 + m_2}{m_1 + m_2} g$

5	Cost	is equal to:		- 01	a.com	1	
	(A)	hypoteness	TIMBLE	Derp	endicular		
		hypotehose	في ال	hypo	otenuse		
	MANO	perpendicular	(D)	117 0	otentise .		
		base		base			
6					the moon is nearly:		
		3,70,000km			,000m		
				1 6 C	,000km		
7	In Einstein's mass-energy equation, C is the:						
	(A)	Speed of sound	(B)	Spee	ed of light		
V	1/(c)	Speedof electron	(D)	Spee	ed of earth		
8	The work done will be zero when the angle between						
force and the distance is:							
	(A)	90°		(B)	45°		
	(C)			(D)	180°		
9	Acco	According to Hooke's law:					
	(B)	strain = stress					
	(C)	strain = constant	(D)	stres	ss = constsnt		
		stress		stra	in		
1	0 Boili	ing point of gold is	equal	to:			
	· (A)	2595°C	大型 马州 医马	(B)	2450°C		
	(C)	2660°C		(D)	1750°C		
		is equal to:					
ř	(A)			(B)	120°F		
		122°F		(D)	130°F	1	
1	$\frac{Q}{2}$	rate of flow of hea	t) is eq	ual to	33 CO $_{II}$,		
	The second second		A COLUMN TO SERVICE	100			
1		$KA(T_1-T_2)$					
1	(A)	$\frac{KA(T_1-T_2)}{L}$		JAN J	$A(T_1-T_2)$		
				(D)	$KA(T_1-T_2)$		
	MAN,	MAGI		(D)	L^2		