Sargodha Board 2018 (Second Group)

Roll No.(in Figures): ----

(in Words): -----

Maximum Marks 60 SUBJECTIVE TYPE (PART- I) Time Allowed :2.10 Hours

Q2. Write short answers to any SIX (6) questions:

 $(6 \times 2 = 12)$

- Define column matrix with example.
- Find whether the matrix $\begin{bmatrix} 7 & -9 \\ 3 & 5 \end{bmatrix}$ is singular or non singular.
- (iii) Simplify: $5^{2^3} \div (5^2)^3$ (iv) Simplify: $\left(\frac{x^3y^4z^5}{x^{-2}y^{-1}z^{-3}}\right)^{\frac{1}{3}}$ (v) Find the value of x. $\log_{64} 8 = \frac{x}{2}$
- (vi) If $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 5 = 0.6990$ find the value of $\log 30$.
- (vii) Evaluate $\frac{x^3y 2z}{xz}$ for x = 3, y = -1, z = -2
- (viii) If $x \frac{1}{y} = 2$ find $x^4 + \frac{1}{y^4}$.

- (ix) Factorize: $3x^2 75y^2$
- Q3. Write short answers to any SIX (6) questions:

- $(6 \times 2 = 12)$
- Find L.C.M. by factorization. $x^2 25x + 100$, $x^2 x 20$ (i)
- Solve equation and check for extraneous solution. $\sqrt{3x+4}=2$ (ii)
- (iii) Find solution set: $\frac{1}{2}|3x + 2| 4 = 11$ (iv) Define Cartesian plane.
- Find values of m and c after expressing line in the form y = mx + c, 3x + y + 1 = 0(v)
- Find the distance between the pair of points. A(-8, 1), B(6, 1)
- (vii) Find mid point of the line segment joining pair of points. A(0, 0), B(0, -5)

(viii) Find x°.

(ix) Find x° and m° in the figure.

(v) State Pythagoras theorem.

- Write short answers to any SIX (6) questions: Define right bisector of a line segment. (i)
 - Whether 3cm, 4cm and 5cm can be lengths of the sides of a triangle? Give reasor (ii)

find mLP.

Q7.

- Define similar triangles. (iii) (iv) In Δ LMN, $\overline{MN} \parallel \overline{PQ}$ if $\overline{mLM} = 6cm$, $\overline{mLQ} = 2.5cm$ and $\overline{mQN} = 5cm$, then
- Verify that a = 5 cm, b = 12 cm, c = 13 cm are lengths of right angled triangle.

(viii)Define the orthocenter of the triangle.

(ix) Construct a $\triangle ABC$ in which $\overline{MAB} = 3.2$ cm, $\overline{MBC} = 4.2$ cm, $\overline{MCA} = 5.2$ cm.

PART - II

Attempt any THREE questions in all. But question No.9 is Compulsory. Note: Solve by using matrix inversion method. 2x + y = 3, 6x + 5y = 1Q5.

 $(3 \times 8 = 24)$

- Simplify: $\sqrt[3]{\frac{a'}{a^m}} \times \sqrt[3]{\frac{a^m}{a^n}} \times \sqrt[3]{\frac{a^n}{a'}}$
- Q6. (a) Use log table to find the value of $\sqrt[5]{2.709} \times \sqrt[7]{1.239}$
 - Find the value of x + y + z if, $x^2 + y^2 + z^2 = 78$ and xy + yz + zx = 59. (b) If (x + 2) is a factor of $3x^2 - 4kx - 4k^2$, then find the value(s) of k. (a)
- Find square root using division method of $9x^4 6x^3 + 7x^2 2x + 1$. (b)
- Find the solution set of the equation. $x + \frac{1}{3} = 2\left(x \frac{2}{3}\right) 6x$ Q8.
 - Construct the △PQR and draw its altitude. mPQ = 6cm, mQR = 4.5cm and mPR = 5.5cm
- Q9. Prove that: the bisectors of the angles of a triangle are concurrent. (OR) Prove that: Triangles on equal bases and of equal altitudes are equal in area